论文代写-英语日语韩语德语俄语法语
论文翻译-英语日语韩语德语俄语法语
论文修改-英语日语韩语德语俄语法语
代写作业代考试题考卷-英语日语韩语德语俄语法语
作文报告申请书文章等代写-英语日语韩语德语俄语法语
研究计划书代写-英语日语韩语德语俄语法语
西班牙语意大利语论文代写翻译修改
论文发表-英语日语韩语德语俄语法语
英语 English
日语 日本語
韩语한국의
法语 Français
德语 Deutsch
俄语 Pусский
西语 Español
意语 Italiano
·英语论文 ·日语论文
·韩语论文 ·德语论文
·法语论文 ·俄语论文

名称:智尚工作室
电话:0760-86388801
传真:0760-85885119
地址:广东中山市学院路1号
网址:www.zsfy.org
E-Mail:cjpdd
@vip.163.com
商务QQ:875870576
微信二维码

业务联系
法语论文
Ministère délégué à la Recherche et aux Nouvelles Technologies- Direction de la Recherche -
添加时间: 2010-4-25 23:17:53 来源: 作者: 点击数:3621

 Ministère délégué à la Recherche et aux Nouvelles Technologies

- Direction de la Recherche -

Action Concertée Incitative

Neurosciences intégratives et computationnelles

Appel à propositions 2003

Les réponses se conformeront au plan proposé.

Les dossiers, rédigés en anglais et accompagnés d'un résumé d'une page en français, devront être envoyés, sous forme de document papier, en 4 exemplaires (ainsi que 15 exemplaires des fiches résumé) à l’adresse suivante :

Ministère délégué à la Recherche et aux nouvelles Technologies

Direction de la Recherche

Cellule ACI

ACI Neurosciences Intégratives et Computationnelles

1, rue Descartes

75231 PARIS Cedex 05

Ils seront également fournis sous forme de fichier électronique, format RTF, adressés à :

Cellule.aci@recherche.gouv.fr

Date limite de réception des documents

L’exemplaire électronique devra être parvenu au Ministère

au plus tard le 14 mars

La date limite pour les versions papier (4 exemplaires complets du dossier, 15 exemplaires des fiches résumé français/anglais) est le 14 mars, la date du cachet de la poste faisant foi.

Des renseignements peuvent être obtenus en envoyant un courrier électronique à l’adresse suivante :

Cellule.aci@recherche.gouv.fr

Constitution du dossier

Dossier complet agrafé incluant dans l'ordre suivant :

les fiches résumé en anglais et en français, servant de page de garde au dossier;

le descriptif scientifique, 6 pages maximum pour un projet, 3 pages pour un pré-projet ;

les renseignements administratifs ;

l'estimation financière.

Dossier à envoyer en 4 exemplaires papier, 1 exemplaire version électronique + 15 exemplaires des fiches résumé

Important

Pour la mise en forme  de ces documents, veuillez

suivre les  recommandations suivantes :

Chacun des dossiers doit être agrafé à l’aide d’une seule agrafe en haut à gauche du document (pas de pochette, ni de reliure) afin d’en faciliter la manutention.
Action Concertée Incitative

Neurosciences intégratives et computationnelles

Appel à propositions 2003

Thème : Cohérence et intégration dans les réseaux neuronaux

Fiche résumé

(15 exemplaires)

Titre du projet : RIVAGe
 Rétroaction lors de l'Intégration Visuelle: vers une Architecture Générique

Durée du projet  : préprojet sur 1an  (ayant vocation à aboutir à un projet sur deux ans en 2004)

Mots-clefs  : Cortex visuel, Rétroaction, Modélisation, Simulation

Responsable scientifique : FAUGERAS Olivier , Responsable du Projet Odyssee,

INRIA BP93 06 902 Sophia, +33 4 92 38 78 30 fax + 33 4 92 38 78 45, Olivier.Faugeras@sophia.inria.fr

Discipline du responsable scientifique :

      Vision par Ordinateur et Mathématiques appliquées

Organisme demandeur  (gestionnaire) :

INRIA Sophia 2004 rt des Lucioles  BP93 F-06902 Sophia, +33 4 92 38 78 30 fax + 33 4 92 38 78 45

Noms et coordonnées des équipes partenaires éventuelles :

CERCO Univ Paul Sabatier, 133 rt de Narbonne, F-31063 Toulouse Cdx, Tel : +33 5-62-17-37-75

ENPC Ecole Nationale des Ponts et Chaussées,
                                          CitéDescartes, F-77455 Marne La Vallée Cedex 2 Tel: +33 1 64 15 35 72

ENS Ecole normale supérieure, 45, rue d'Ulm, F-75230 Paris cedex 05 Tel: +33 1.44.32.21.54

Disciplines couvertes par ces équipes partenaires :

Structure, fonction et développement du cortex visuel

Modélisation de l'activité cérébrale

Résumé du projet: Le but de ce pré-projet est de construire une relation étroite entre un laboratoire des neurosciences de la perception visuelle d’une part et de la vision artificielle (aussi appelé vision par ordinateur) d’autre part. Le but à long terme est d’aboutir à une théorie commune débouchant sur des questions précises dans le champ des neurosciences et des architectures et des algorithmes utilisables en vision artificielle et ses applications.

   On s'intéresse à l'étude comparative de l'intégration des processus visuels au sein de deux systèmes : l'un biologique (précisément les voies pariéto-ventrales et pariéto-dorsales du système visuel cortical chez le primate) et l'autre artificiel. Ce dernier délivre des estimations: « where » du mouvement et de la structure de la scène observée et « what » du groupement perceptuel et de l’identification d'objets de la scène. Dans ce cadre, le rôle et le fonctionnement des mécanismes adaptatifs de rétroaction est au centre des recherches actuelles dans le domaine biologique.
   Au coeur de cette étude est l'idée que le traitement visuel effectue :
                   -  une première vague de calculs qui permet de détourer l'information reçue, de fournir une estimation initiale, de faire des hypothèses sur les objets de la scène, etc..
                   - un raffinement  itératif pour arriver à une perception effective de la scène.
   De tels mécanismes adaptatifs sont omniprésents, parfois implicitement, dans les processus de vision artificielle où ils sont bien souvent traités dans le cadre du calcul des variations qui permet, outre de garantir que les problèmes sont mathématiquement bien posés, de répondre à des questions très importantes relatives à la  fusion d’informations telles que  (i) la combinaison d'attributs visuels calculés par des modules différents et utilisés ensuite pour les tâches de « what » et « where »et (ii) l'utilisation d'information a priori issue de modules visuels de plus haut niveau. Ce sont des « modèles » des données à traiter, ces modèles étant soit donnés a priori  (e.g. rigidité, régularité de forme, etc..),  soit issus de l’étiquetage d'objets reconnus par « la première vague » de calculs du système.
   Dans le cadre du thème 3 de cette ACI nous proposons un pré-projet: une étude théorique en trois étapes
         (a) une analyse systématique de la littérature en neurosciences portant sur les mécanismes adaptatifs de rétroaction au sein du cortex visuel.
         (b) une interprétation des résultats de cette analyse à la lumière des apports de l'approche variationnelle utilisée en vision arficielle pour traiter ces questions.
         (c) une définition du cahier des charges d'un outil de simulation informatique de certains aspects du fonctionnement du cortex visuel, qui pourrait être réalisé dans une seconde phase après ce pré-projet.
Action Concertée Incitative

Neurosciences intégratives et computationnelles

Appel à propositions 2003


Summary

Title of the project: RIVAGe

Feedback during Visual Integration : towards a Generic Architecture

Duration of the project: 1 year pre-project (with the goal of a two years project in 2004)

Key words : Visual cortex, Feedback, Modelization, Simulation

Scientific coordinator :  FAUGERAS Olivier , Odyssee, Research team leader

INRIA BP93 06902 Sophia, +33 4 92 38 78 30 fax + 33 4 92 38 78 45, Olivier.Faugeras@sophia.inria.fr

Field of expertise:  Computer Vision and Applied Mathematics

Institution (managing the project) :

INRIA Sophia 2004 rt des Lucioles  BP93 F-06902 Sophia, +33 4 92 38 78 30 fax + 33 4 92 38 78 45

Names and addresses of scientific partners:

   CERCO Univ Paul Sabatier, 133 rt de Narbonne, F-31063 Toulouse Cedex, Tel : +33 5-62-17-37-75

   ENPC Ecole Nationale des Ponts et Chaussées, 6 av Blaise Pascal, F-77455 Marne la Vallée, +33 1.64.15.36.64

   ENS Ecole Normale Supérieure, 45, rue d'Ulm, F-75230 Paris cedex 05 Tel: +33 1.44.32.21.54

Partners field of expertise:

  Development, function and structure of the visual cortex   

  Modelization of the cortical activity

Project summary:  The goal of this pre-project is to build a strong relationship between

a research team working in neurosciences of the visual perception and a research team working in artificil vision (i.e. computer vision). The long term objective is to elaborate a common theory about precise questions in both neurosciences and algorithms and their architecture in artificial vision, including computer vision applications.

We consider the comparative study of visual process integration within either a biological system, i.e. the parieto-ventral and parieto-dorsal pathways of the cortical visual system in the primate or an artificial system. Both systems deliver an estimation of [where], that is to say the motion and structure of the observed scene and of [what], i.e. the perceptual grouping and labeling of objects in the scene. Within this framework, the function and behavior of adaptive feedback

mechanisms is a key point and on the leading edge of biological studies. The core of this idea is that visual processing is build around:

1) a first computational step allowing to pre-process the input information, provide initial estimates, generate hypotheses about which models to use, …

2) a  refinement step using iterative mechanisms of optimization of the visual perception.

      Such mechanisms occur, sometimes implicitly, in artificial vision processes. They are mainly related to such problems as the combination of visual attributes, computed from different sources and then fused for ``what'' and ``where'' perceptual tasks; the use of  a-priori information, obtained from higher-level visual modules. These modules define models estimated from the data. These models are  either given  a-priori (e.g. rigidity, shape regularity, ..) or chosen thanks to object labeling obtained during the first computational step.

Within the scope of the 3rd topics of this ACI, this project consists in three steps:

       (a) a systematic analysis of existing results in neuro-science,

       (b) an interpretation of these results from the viewpoint of the variational approach widely used in computer vision

       (c) a specification of a simulation tool of parts of the visual cortex,  the actual development of this simulator being the goal of a second phase after this pre-project.

       
Action Concertée Incitative

Neurosciences intégratives et computationnelles

Appel à propositions 2003

Descriptif scientifique / Scientific description

1. Situation actuelle du sujet proposé / Position of the problem

The interactions between the communities of researchers studying the biological bases of vision and those interested in developing artificial vision systems have gone up and down during the last twenty years. In the years 1980's, there was a consensus between the two communities highlighted by the publication of the book Vision by David Marr [16]. In those days, processing of visual information was thought to be done in a series of steps, progressing from a local analysis of borders to 3D surface elements and then to the identification of 3D objects. This model was consistent with the hierarchy of cortical areas that has just been proposed by Maunsell and Van Essen [8] : borders were analyzed in area V1 and successively more elaborate degrees of processing were achieved in the higher order areas.

Twenty years later, the situation has changed considerably : biological visual systems can no longer be considered as purely feedforward systems consisting of sets of filters of progressively higher degree of sophistication as one penetrates the different layers of processing. In the field of artificial vision, numerous other models have been proposed to process information. These models work well within their context but a general framework for processing visual information is no longer in sight. The purpose of this pre-project is to examine the possibilities of laying new foundations for interactions between the two communities.

Two of the major advances in the field of biological vision in recent years have been the realization that 1) information does not progress only bottom-up but that there is a very dense network of top-down connections and 2) that there are in the brain internal representations of the external world that are embodied in neuronal networks. This change in perspective has lead biologists to view the visual system no longer as processing information transferred by the reti, nal ganglion cells (the computer analyzing the output of the camera), but more as processing its own internal representations and checking whether these representations are consistent the messages sent by the sensory neurons (checking the validity of the models). It is therefore of major importance to evaluate the role of the top-down (also called feedback) connections that are likely to be used to compare the representations of higher levels with those located at lower levels of processing.

The roles attributed to top-down influences are numerous but very few have been tested in detail : feedback connections are thought to be involved in directing attention, in memory retrieval, in comparing internal models with sensory inputs, in combining global and local processing. Our intention is to examine the role of top-down influences not in isolation but within a general model of the brain such as that proposed by Friston [9]. This model stresses the point that feedback connections are essential when the relationship between retinal inputs and the stimuli that generate them is not invertible. This is the case for practically all situations of vision outside the laboratory because of the interactions between the stimuli and the importance of the context for a given stimulus. To resolve this difficulty, Friston proposes that the feedback connections send back information to the early levels of processing and that this information is compared to the input vectors. Thus, as in the model of Rao and Ballard [22], the way by which internal representations and incoming signals are combined is mainly subtractive : only differences are transmitted to higher levels. Although such models are popular among theoreticians, they do not fit with the results of biological experiments : all studies of feedback connections so far [4] converge to conclude that feedback influences act to potentiate the responses of neurons at lower levels. One of the goals of our collaboration will therefore be to develop models that incorporate the notions of internal models, non invertible relationship and interactions between top-down and bottom-up influences but are more compatible with results from biological vision, in the hope that this search might reveal some particularly interesting strategies used by biological systems to solve the problems posed by Friston [9].

Another recent important change in biological vision is the realization that information is not processed in a step-by-step hierarchical fashion but that some higher order areas, that contain sophisticated representations, are activated extremely early in the processing of visual information. In particular, it has been shown that the entire dorsal stream, including the parietal cortex and the frontal cortex are activated only a few millisecond after area V1 which constitutes the initial processing stage of vision in primates [26]. This new perspective has led to a model in which a first-pass analysis is done by neurons in the dorsal stream and that this first-pass analysis is used, through feedback connections, to optimize the more detailed processing that occurs later (detailed shape, color). One of the goals of our collaboration is to determine whether such a model could be used in the framework of a general model of the visual system to improve and accelerate the processing of visual stimuli.

We consider the topic ``integrated model of visual processing''. Regarding the hierarchical organization of the visual cortical areas of the primate (see e.g. [27] for a comparative description of the organization of visual areas in macaque and human cerebral cortex) this corresponds to two main streams: the ventral and dorsal considered as the ``what'' (i.e. object recognition) and ``where'' (i.e. object localization and motion analysis) processing streams, respectively. Our goal is to contribute to models of biologically plausible neural computations (see e.g. [3] for details about the biological plausibility of linear and multiplicative computational steps, including motion detection and short-term memory, while [29] focuses on the biologically plausible implementation of non-linear operation such as minimum computation or comparisons between inputs).

Following [4] we emphasize the fact that cortical visual processing requires information to be exchanged between neurons coding for distant regions in the visual field. Feedback connections from upper-layers are best candidates for such interactions because magnocellular layers of the LGN very rapidly project a ``first-pass'' information used to guide further processing. More precisely, [2] demonstrate that the so called ``horizontal connections'' (i.e. within a cortical, e.g. retinotopic, map) are not fast enough to account for such a transfer, considering the known timings of information transfer [19].

(1) These cortical computations include stereo/binocular disparity. The work of [17] is a recent attempt to explain how complex cells can issue depth percepts for binocular but also monocular (i.e. da Vince stereopsis) cues, including induced effects from contrast changes (i.e. shape from illumination) as simulated in [12]. This also includes disparity tuning: [14] develops a model explaining how the LGN is involved in binocular disparity tuning, matching left and right images with the same contrast polarity but inducing feedback adaptation from signals of opposite polarities. In the present study, we would like to get a step further, considering V3 computations. More precisely, [1] shows the existence of disparity-selective columns including occlusions and proposes that V3 contributes to the processing of stereoscopic depth information and that the parietal areas to which it projects use this information for object depth and 3D shape analysis.

(2) A second aspect is perceptual grouping. For instance, [13] attempts to demonstrate how the known laminar architecture of the V1 and V2 areas of the visual cortex, assuming a functional role for this stratification, is involved in percepts generation, see also [18]. This includes pre-attentive/attentive aspects, as pointed out by [21] describing how the parvocellular stream of the visual cortex performs visual filtering, i.e. attention and perceptual grouping, using feed-forward, feedback and horizontal interactions. One key aspect is the figure / ground segmentation in the brain, as recently reviewed by [24] showing that shape perception depends critically on this cue, while its link to early-vision mechanisms is now relatively well understood [25] e.g. the role of junctions in surface completion and contour matching.

(3) Motion processing is also a key problem. It has been shown in [6] how responses to moving stimuli are derived from transient cell, speed-tuning cell responses of different sizes yielding visual motion perception and speed discrimination, involving both ventral and dorsal visual pathways. At a cognitive level, considering interpolation between prototypes of gestures, [11] attempts to interpret how the cortical ``what'' and ``where'' pathways of the visual cortex are involved in complex movements patterns. For instance, a complex spatio-temporal pattern is efficiently represented as a combination of prototypes whose coefficients are estimated using variational estimation methods [10]. Well-known early vision visual cues (e.g. the Koenderinck def value easily computed by an affine modelization of the retinal motion field [5]) are other relevant candidates for such a parameterization.

All three previous aspects of visual perception are easily formalized using the ``generative model'' approach developed in [7] and reviewed in [9]. This allows to relate what is actually known in statistical modelization with existing biological models. A general framework for the role of feedback connections is proposed in these publications. A step further, the link with variational approaches [28] has been already sketched out. Regarding the role of feedback connections, [22] describes a model of visual processing in which feedback connections from a higher- to a lower- order visual cortical area carry predictions of lower-level neural activities, whereas the feed-forward connections carry the residual errors between the predictions and the actual lower-level activities. In the scope of this approach receptive fields are Gabor-like filters with a sigmoid profile output, weights being optimized by a 1st order gradient optimization of a likelihood criterion. This is easily generalized to more plausible operators. But the relation with sensory-motor strategies, as discussed in [23] is very important: these authors point out the fact that visual cognition depends heavily on the gaze orientation mechanisms. They also analyze how the appearance information contained in the image is converted into a target position, using saliency maps and separating targeting ``what'' process and the localization ``where'' process. This is in close agreement with the functionalities of the dorsal (where) and ventral (what) visual cortical pathways.

As a conclusion, this first reading of the literature indicates that there are many but rather different frameworks to model the ventral/dorsal visual pathways functionalities, while these correspond to recent computer vision mechanisms, now formalized in a unifying ``variational'' framework (e.g. [15,20] for recent introductions). It is thus very tempting to investigate whether this unifying framework could also be relevant in modeling biological vision. This is the goal of this project.

Bibliography

[1]    D. Adams and S. Zeki.    Functional organization of macaque V3 for stereoscopic depth.    J. Neurophysiol., 86:2195-2203, 2001.

[2]    A. Angelucci and J. Bullier.    Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons?    J. Physiol. (Paris), 2002.

[3]    G. Bugmann.    Biologically plausible neural computation.    Biosystems, 40:11-19, 1997.

[4]    J. Bullier.    Integrated model of visual processing.    Brain Res. Reviews, 36:96-107, 2001.

[5]    C. Caudek and N. Rubin.    Segmentation in structure from motion: modeling and psychophysics.    Vision Research, 41:2715-2732, 2001.

[6]    J. Chey, S. Grossberg, and E. Mingolla.    Neural dynamics of motion processing and speed discrimination.    Vision Res., 38:2769-2786, 1997.

[7]    P. Dayan and L. F. Abbott.    Theoretical Neuroscience : Computational and Mathematical Modeling of Neural Systems.    MIT Press, 2001.

[8]    D. V. Essen and J. Maunsell.    Hierarchical organization and functional streams in the visual cortex.    Trends in Neurosciences, 6(9), 1983.

[9]    K. Friston.    Functional integration and inference in the brain.    Prog Neurobiol, 68:113-143, 2002.

[10]    M. Giese and M. Lappe.    Measurement of generalization fields for the recognition of biological motion.    Vision Research, 38:1847-1858, 2002.

[11]    M. Giese and T. Poggio.    Neural mechanisms for the recognition of biological movements and actions.    Nature Neuroscience, 2003.    in press.

[12]    S. Grossberg and N. McLoughlin.    Cortical dynamics of three-dimensional surface perception: binocular and half-occluded scenic images.    Neural Networks, 10(9):1583-1605, 1997.

[13]    S. Grossberg, E. Mingolla, and W. D. Ross.    Visual brain and visual perception: how does the cortex do perceptual grouping?    Trends in Neurosciences, 20(3):106-111, 1997.

[14]    A. Grunewald and S. Grossberg.    Self-organization of binocular disparity tuning by reciprocal corticogeniculate interactions.    Journal of Cognitive Neuroscience, 10:199-215, 1998.

[15]    F. Guichard and J.-M. Morel.    Image analysis and P.D.E.'s.    Tutorials on Geometrically Based Motion, IPAM, Ucla, Los Angeles, 2001.

[16]    D. Marr.    Vision.    W.H. Freeman and Co., 1982.

[17]    N. McLoughlin and S. Grossberg.    Cortical computation of stereo disparity.    Vision Res, 38(1):91-99, 1998.

[18]    H. Neumann and E. Mingolla.    Computational neural models of spatial integration in perceptual grouping.    In T. . P. Kellman, editor, From Fragments to Objects: Grouping and Segmentation in Vision, pages 353-400. Amsterdam: Elsevier, 2001.

[19]    L. Novak and J. Bullier.    The Timing of Information Transfer in the Visual System, volume 12 of Cerebral Cortex, chapter 5, pages 205-241.    Plenum Press, New York, 1997.

[20]    S. Osher and R. P. Fedkiw.    Level set methods : overview and recent results.    Tutorials on Geometrically Based Motion, IPAM, Ucla, Los Angeles, 2001.

[21]    R. Raizada and S. Grossberg.    Towards a theory of the laminar architecture of the cerebral cortex: Computational clues from the visual system.    Cerebral Cortex, 13:100-113, 2003.

[22]    R. Rao and D. Ballard.    Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects.    Nat Neurosci, 2(1):79-87, 1999.

[23]    R. Rao, G. Zelinsky, M. M. Hayhoe, and D. Ballard.    Eye movements in iconic visual search.    Vision Research, 42(11):447-1463, 2002.

[24]    N. Rubin.    Figure and ground in the brain.    Nature Neuroscience, 4:857-858, 2001.

[25]    N. Rubin.    The role of junctions in surface completion and contour matching.    Perception, 30:339-366, 2001.

[26]    S. Thorpe and M. Fabre-Thorpe.    Seeking categories in the brain.    Science, 291:260-263, 2001.

[27]    D. Van-Essen.    Organization of visual areas in macaque and human cerebral cortex.    In L. Chapula and J. Werner, editors, The Visual Neurosciences. MIT Press, 2003.

[28]    T. Vieville.    Biologically plausible regularization mechanisms.    RR 4625, INRIA, 2002.

[29]    A. J. Yu, M. Giese, and T. Poggio.    Biophysiologically plausible implementations of maximum operation.    Neural Computation, 14(12), 2003.

The variational approach: a unifying theoretical framework to analyze visual processes

The adaptive mechanisms described previously are always present -most of the time implicitly- in artificial visual processes. The so-called ``variational approach'' is a unifying theoretical framework to design and implement this formalism.

At a phenomenological level, this framework :

  - defines the estimation problem in terms of the optimization of a criterion. This criterion is usually built from two terms:

 (i) One term is related to the data input (e.g. looking for a solution as compatible as possible with this input)

 (ii) One term is related to the a-priori information (i.e. looking for a solution corresponding to plausible properties allowing to regularize the solution)

 - implements this global optimization using a local iterative scheme of a parametric or non-parametric map.

  This scheme arises from the partial differential equations (PDEs) that must be verified by the solution.

  The architecture of this implementation may correspond to what is processed in a cortical [maxi]column: here is the fundamental motivation to apply this formalism to neuronal computations, since we assume that it provides an alternative to usual artificial ``neural-nets'' as a basic generic biologically plausible estimation process.

More precisely, such a mechanism allows to model how a visual system, as a whole, solves perceptual tasks not only at a ``pixel'' level. A key aspect is that, under this assumption, there is a direct link between PDE parameterization and spatio-temporal maps of cortical activity. Therefore we plan to find biological networks of neurons which carry out some of the PDEs computations used in algorithmic vision and conversely, starting from neuro-physiological data, to try to define pertinent PDEs acting on visual inputs.

This should allow the development of not only anatomical but also functional models of activity in cortical areas during a visual task.

At a theoretical level, the variational paradigm is interesting because:

 - it provides concise mathematical models of many computer vision problems,

 - it allows to study in detail the problems of the existence and the uniqueness of solutions of the resulting equations, including wellposedness and

 - to design correct and usually efficient algorithms to calculate approximate solutions of these equations. 

Main publications of the partners related to this subject:

Hupé, J. M., James, A. C., Payne, B. R., Lomber, S. G., Girard, P., and Bullier, J. (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394 : 784-787.

Hupé, J.M., James, A.C., Girard, P., Lomber, S., L., Payne, B., and Bullier, J. (2001) Feedback connections act on the early part of the responses in monkey visual cortex. J. Neurophysiol. 85, 134-145.

Angelucci, A., Levitt, J.B., Walton, E.J.S., Hup?, J.-M., Bullier, J., Lund, J.S. (2002) Circuits for local and global signal integration in visual cortex. J. Neurosci. 22: 8633-46.

Bullier, J. (2001) Integrated model of visual processing. Brain Res. Reviews, 36:96-107.

L. Novak and J. Bullier. (1997) The Timing of Information Transfer in the Visual System, Cerebral Cortex, vol 12, chapter 5, pages 205-241. Plenum Press, New York.

Rousselet GA, Fabre-Thorpe M, Thorpe SJ. (2002. Parallel processing in high-level categorization of natural images. Nat Neurosci 5: 629-30

Mikael Rousson, Thomas Brox and Rachid Deriche (2003) "Active Unsupervised Texture Segmentation on a Diffusion Based Feature Space", IEEE Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA,

Vieville, T., & Faugeras, O. (2002). La longue marche vers la vision cognitive. La Recherche, 2.

Vieville, T., & Crahay, S, O. (2003). A deterministic biologically plausible classifier. J.Computational

      Neuroscience, in review

Vieville, T, Lingrand, D. & Gaspard, F. (2001). Implementing a multi-model estimation method, International Journal of Computer Vision, 44.

Hermosillo, G., Chefdhotel, C. & Faugeras, O. (2002). Variational methods for multimodal image matching. International Journal of Computer Vision, 50, 329-343.

Thirion, B. & Faugeras, O. (2002). Fmri data modeling: from linear to functional dependence, in a multivariate framework. Proc. of the 8th Int. Conf. on Functional Mapping of the Human Brain.

2.  Description du pré-projet / Pre-project description

Purpose Within the scope of the 3rd topic of this ACI, this project consists in three steps:

       (a) a systematic analysis of existing results in neuro-science related to the feedback mechanisms in the visual cortex,

       (b) an interpretation of these results from the viewpoint of  the variational approach widely used in computer vision

       (c) a specification, based on the previous two steps, of a simulation tool of parts of the visual cortex,  the actual development of this simulator being the goal of a second phase after this pre-project.

Methods The partners will organize a working group for literature reading and criticizing, exchange of ideas, development of a set of concepts common to biological and artificial vision. Twice a month joint working sessions with oral presentations will be organized. Geographically this group is scattered over four sites. The work has already started and the method been validated. The work of  Friston, Dayan and Abott and Grossberg et al. will be analyzed first (see the enclosed bibliography).

In parallel with this activity, computer scientists in the pre-project will start implementing and simulating the most promising and relevant models proposed in the literature in order to understand to what extent they can predict experimental neuro-physiological or psycho-physiological data. These pieces of code are not to be considered as software development, but preliminary prototypes for feasibility purposes.

To prepare for this part of the work, a young computer engineer has done an extensive study of existing non-commercial software tools, and performed detailed evaluations on well-known (actually V1 and MT) neuronal computations.

3. Conséquences attendues (valorisation) / Outcome and valorisation

 {A} The development of a strong synergy between a laboratory in visual neurosciences and one in computational vision.

 {B} A review of the formalisms used by the visual neuroscience community in order to model and predict experimental data related to the visual cortex. Interesting consequences may be an evaluation of their relevance, a better understanding of their intrinsic complexity, and the construction of a mathematical typology.

 {C} An identification of the French and European emerging entities in this area, with the objective to join or create at the European level a multidisciplinary community in biological/computational vision.

 {D} A conclusion about whether or not the variational approach may provide a unifying formalism to describe the behavior and functionality of visual cortical layers. Although quite promising, this idea is still in a very preliminary stage and needs to be confronted to hard biological facts, this pre-project is precisely centered around this question.

 {E} The specification of a software tool for the simulation of ``macroscopic'' aspects of visual processing in the cortex, as detailed previously in this proposal. The precise mathematical framework of this simulator will heavily depend on the outcome of {D} and this is the reason why we want to proceed in two steps with a pre-project possibly followed by a full-project.


Ministère délégué à la Recherche et aux Nouvelles Technologies

- Direction de la Recherche -

Action Concertée Incitative

Neurosciences intégratives et computationnelles

Appel à propositions 2003

Renseignements administratifs

(4 exemplaires)

Nom du responsable scientifique :          FAUGERAS Olivier

Etablissement dont relève le responsable scientifique : INRIA

Laboratoire : INRIA Sophia, Projet Odyssee http://www-sop.inria.fr/odyssee

Directeur du laboratoire (nom, prénom et signature) : COSNARD Michel

Adresse complète : INRIA 2004 rt des Lucioles, BP93 06 902 Sophia

Téléphone :      +33 4 92 38 78 30                                    Télécopie :  + 33 4 92 38 78 45

Adresse électronique : Thierry.Vieville@sophia.inria.fr

Etablissement gestionnaire de l’opération

Nom :

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Statut juridique : EPST

Adresse complète : INRIA, Sophia 2004 rt des Lucioles, BP93 06 902 Sophia

Téléphone :      +33 4 92 38 77 77                           Télécopie :  + 33 4 92 38 78 45

Signature du représentant de l’organisme gestionnaire :


Composition de l’équipe du responsable

Nom

Prénom

Grade

Discipline*

Institution

de rattachement

Temps consacré

(en mois)

FAUGERAS

DERICHE

KORNPROBST

PAPADOPOULO

VIEVILLE

Olivier

Rachid

Pierre

Théodore

Thierry

DR

DR

 

       CR

       CR

DR

Modélisation de la vision

Modélisation du groupement perceptuel

Modélisation de la perception du mouvement

Modélisation de l'activité cérébrale

Modélisation de la classification d'objets

INRIA (Sophia)

Idem

Idem

Idem

Idem

3

3

3

3

6

 

(*) Ces 5 chercheurs travaillent en Vision par Ordinateur avec des spécialités explicités ici.

Composition des autres équipes participant au programme de recherche

Nom

Prénom

Grade

Discipline

Institution

de rattachement

Temps consacré

(en mois)

BULLIER

NOVAK

GUYONNEAU

LESTRINGANT

Jean

Lionel

Rudy

Renaud

DR

CR

PhD

IE

Modélisation de la vision

Modélisation de l'activité cérébrale

Neuro-science computationelle

Modélisation

CERCO (Toulouse)

Idem

Idem

idem

3

3

6

6

Nom

Prénom

Grade

Discipline

Institution*

de rattachement

Temps consacré

(en mois)

CLERC

KERIVEN

Maureen

Renaud

IPC

ICPC

Modélisation de la perception de la texture

Modélisation de l'activité cérébrale

ENPC (Champs)

Idem

3

1


Nom

Prénom

Grade

Discipline

Institution*

de rattachement

Temps consacré

(en mois)

CHARPIAT

Guillaume

PhD

Modélisation de l'activité cérébrale

ENS (Paris)

3

 

 

(*) L'équipe de recherche Odyssee est un projet commun entre l'INRIA, l'ENS et l'ENPC

Ministère délégué à la Recherche et aux Nouvelles Technologies

- Direction de la Recherche -

Action Concertée Incitative

Neurosciences intégratives et computationnelles

Appel à propositions 2002

Estimation financière

(4 exemplaires)

Titre du projet : RIVAGe

Rétroaction lors de l'Intégration Visuelle: vers une Architecture Générique

Nom du responsable scientifique : FAUGERAS Olivier

Demande financière : (Indiquer les montants en euros)

      Fonctionnement (TTC)

frais de laboratoire                   aucun    

prestations de service        aucune

frais de mission  (1)                4000 euros

frais de gestion                pris en charge par les organismes

Equipement (TTC) (2)              6000 euros                                                                                                

Montant total de l'aide demandée (TTC)  10000 euros

Autres financements du projet

demandés : post-doc pour l'étude et le développement des outils de simulation (2nd phase du projet)

obtenus : projet Amiria / Robea, collaboration entre le Cerco et l'INRIA

http://www-sop.inria.fr/odyssee/contracts/robea/amiria.pdf

(sur la modélisation de la classification d'objets)

(1) Détails des missions:

           Séjour d'un jeune chercheur du CERCO à l'INRIA :  10 jours x 50 e/j + 200 e voyage = 700 e

           Séjours de travail de chercheurs CERCO <-> INRIA :  10 x (2 jours x 50 e/j + 200 e voyage)  = 3000 e

           Participation à un événement scientifique (congrès, .. ) d'un représentant du projet : 300e

(2) Equipement :.

Achat d'ouvrages pour l'étude bibliographique : 12 x environ 40 e = 500 e

Equipement de visio-conférence sur trois sites (le 4ème est équipé) : 3 x 500 e = 1500 e

Deux stations de travail pour le déploiement des outils de télétravail et de simulation : 2 x 2000 e

智尚简介  |  诚聘英才  |  联系我们  |  友情链接
版权所有:@2007-2009 智尚 电话:0760-86388801 客服QQ:875870576
地址:广东中山市学院路1号 邮编:528402 皖ICP备12010335号-8
  • 《飘》与《倾城之恋》中女性形象比较
  • 中国大学法语专业毕业论文写作研究
  • 韩语专业毕业论文写作探索
  • 高职日语专业毕业论文测评体系思考
  • 日语专业毕业论文选题问题
  • 日语专业本科毕业论文现状调查与分析
  • 境外将美元汇入中国方法渠道方式
  • 财产、厂房和设备按照IAS16审计
  • IFRS:國際財務報告準則
  • IFRS:國際財務報告準則
  • 德国酒店中德两国文化的交融和冲突
  • 工业翻译中译英考试题目
  • Introduction to en
  • 从汉法主要颜色词汇的文化内涵看两国文
  • Un problème chez &
  • INTERNATIONAL AND
  • IHRM Individual re
  • НАЦИОНАЛЬНО-КУЛЬТУ
  • ТЕОРЕТИЧЕСКИЕ ОСНО
  • SPE会议论文翻译
  • Project Proposal 地
  • 中国意大利家用电器领域合作的可能性和
  • Career Goal与Career
  • Caractéristiques e
  • L'influence de l'S
  • 英语口语教学改革途径测试与分析
  • 语用学理论与高校英语阅读教学
  • 日本语研究计划书写作申请
  • To Whom it May Con
  • 译文中英对照葡萄酒产品介绍
  • 韩国传统用餐礼节
  • 日本語の暧昧語婉曲暧昧性省略表現以心
  • 研究计划书写作要求
  • Outline Impact of
  • 计算机工程与网络技术国际学术会议EI
  • 微软的人脸3D建模技术 Kinect
  • Qualitative resear
  • 新闻的感想
  • 与老师对话的测验
  • 韩语论文修改意见教授老师
  • 华南师范大学外国语言文化学院英语专业
  • APA论文写作格式
  • the surrounding en
  • Современное состоя
  • CHIN30005 Advanced
  • The APA Harvard Sy
  • Annotated Bibiolgr
  • Acker Merrall & Co
  • 资生堂进入中国市场的经营策略
  • Introduction to Pu
  • 软件测试Introduction t
  • Pro Ajax and java
  • 用户体验The user exper
  • AJAX Design Patter
  • The Rich Client Pl
  • Keyframer Chunks
  • 3D-Studio File For
  • Mathematics for Co
  • The Linux MTD, JFF
  • 中日体态语的表现形式及其差异
  • CB 202 System Anal
  • 论日本恐怖电影与好莱坞恐怖片的异同
  • 俄语论文修改
  • 古典诗歌翻译英语论文资料
  • <한중
  • 公司治理(Corporate Gov
  • 英语习语翻译中的移植与转换
  • 日语(上) 期末复习题
  • ACTIVIDAD CORRESPO
  • 리더&#
  • 购物小票翻译
  • 论文摘要翻译英文
  • Bedeutung der Prod
  • ELABORACIÓN
  • 英语考卷代写代做
  • 日本語の感情形容詞の使用特徴——ドラ
  • 未来創造学部卒業研究要領
  • 光之明(国际)低碳产品交易中心介绍
  • 中国の茶文化と日本茶道との比較—精神
  • 목차
  • Final Project Grad
  • 東京学芸大学>センターなど教員許 夏
  • 東京学芸大学 大学院教育学研究科(修
  • 白澤論
  • ポスト社会主義モンゴルにおけるカザフ
  • 言語と色彩現象—史的テクストをもとに
  • 渡来人伝説の研究
  • 中日企业文化差异的比较
  • Modellierung des B
  • 日本大学奖学金申请
  • 大学日语教师尉老师
  • 석사&#
  • Chemical Shift of
  • 中韩生日习俗文化比较
  • Measure of Attachm
  • 酒店韩国客人满意度影响因素研究
  • 要旨部分の訂正版をお送りします
  • Writing and textua
  • 日本企業文化が中国企業にもたらす啓示
  • 日本情报信息专业考试题
  • 雅丽姿毛绒时装有限公司网站文案(中文
  • 語用論の関連性理論「carston」
  • 組織行動と情報セキュリティ.レポート
  • Bedarf
  • 中日企业文化差异的比较
  • 从语形的角度对比中日“手”语义派生的
  • 中国明朝汉籍东传日本及其对日本文化的
  • 《中日茶道文化比较》
  • 从中日两国电视剧看中日文化之差异
  • FOM Hochschule für
  • Die Rolle der Bank
  • A Penny for Your T
  • 也谈ガ行鼻浊音的语音教学问题
  • On the Difference
  • 衣装は苗族の伝統文化の主な表現形式
  • 日语语言文学硕士论文:日本の义务教育
  • 日本的茶文化
  • Samsung Electronic
  • Synthesis and char
  • The traveling mark
  • The Japanese Democ
  • 四季の歌
  • CapitoloI La situa
  • The Effects of Aff
  • WEB服务安全保障分析
  • 音译汉语和英语的相互渗透引用
  • 中日两国服装贸易日语论文写作要求
  • 日语论文修改意见
  • 英语作文题目
  • 申请留学社会经验心得体会
  • BE951 Coursework O
  • Overview township
  • 日本の長寿社会考察
  • 日语老师教师电话联系方式
  • 「依頼」に対する中上級者の「断り」に
  • 日本語序論
  • component formatti
  • 日文文献资料的查阅方法
  • 日文文献资料的查阅方法
  • 日语文献检索日文文献搜索网站
  • 日本留学硕士及研究生的区别硕士申请条
  • Adult attachment s
  • レベルが向上する中国の日本学研究修士
  • 日本留学硕士(修士)与研究生的区别
  • Nontraditional Man
  • Engine Lathes
  • Automatic Screw M
  • Chain Drives
  • V-belt
  • Bestimmung der rut
  • 中山LED生产厂家企业黄页大全
  • 活用神话的文化背景来看韩国语教育方案
  • MLA論文格式
  • 旅游中介
  • MLA论文格式代写MLA论文
  • 小論文參考資料寫作格式範例(採APA
  • clothing model; fi
  • 共同利用者支援システムへのユーザー登
  • 太陽風を利用した次世代宇宙推進システ
  • RAO-SS:疎行列ソルバにおける実
  • 井伏鱒二の作品における小動物について
  • 從“老祖宗的典籍”到“現代科學的証
  • “A great Pecking D
  • 净月法师简历
  • 科技论文中日对照
  • 翻译的科技论文节选
  •  IPY-4へ向ける準備の進み具合
  • 論文誌のJ-STAGE投稿ʍ
  • Journal of Compute
  • 学会誌 (Journal of Co
  • 学会誌JCCJ特集号への投稿締切日の
  • 「化学レポート:現状と将来」
  • 韩语翻译个人简历
  • 九三会所
  • 事態情報附加連体節の中国語表現につい
  • International Bacc
  • HL introduction do
  • コーパスを利用した日本語の複合動詞の
  • 日语分词技术在日语教材开发中的应用构
  • 北極圏環境研究センター活動報告
  • 语用学在翻译中的运用
  • 日汉交替传译小议——从两篇口译试题谈
  • 総合科学専攻における卒業論文(ミニ卒
  • Heroes in August W
  • 玛雅文明-西班牙语论文
  • 西班牙语论文-西班牙旅游美食建筑
  • 八戸工業大学工学部環境建設工学科卒業
  • 親の連れ子として離島の旧家にやって来
  • 「米ソ協定」下の引揚げにおいて
  • タイトル:少子化対策の国際比較
  • メインタイトル:ここに入力。欧数字は
  • 東洋大学工学部環境建設学科卒業論文要
  • IPCar:自動車プローブ情報システ
  • Abrupt Climate Cha
  • Recognition of Eco
  • Complexities of Ch
  • Statistical Analys
  • Dangerous Level o
  • 中日对照新闻稿
  • 俄汉语外来词使用的主要领域对比分析
  • 两种形式的主谓一致
  • 韩语论文大纲修改
  • 중국&#
  • 俄语外来词的同化问题
  • 北海道方言中自发助动词らさる的用法与
  • 论高职英语教育基础性与实用性的有机结
  • 论高职幼师双语口语技能的培养
  • 论高职幼师英语口语技能的培养
  •     自分・この眼&
  • 成蹊大学大学院 経済経営研究科
  • アクア・マイクロ
  • 公共経営研究科修士論文(政策提言論文
  • 基于学习风格的英语学习多媒体课件包
  • 后殖民时期印度英语诗歌管窥
  • 汉语互动致使句的句法生成
  • 笔译价格
  • 携帯TV電話の活用
  • 英語学習におけるノートテイキング方略
  • 強化学習と決定木によるエージェント
  • エージェントの行動様式の学習法
  • 学習エージェントとは
  • 強化学習と決定木学習による汎用エージ
  • 講演概要の書き方
  • 对学生英语上下义语言知识与写作技能的
  • 英汉词汇文化内涵及其翻译
  • 论大学英语教学改革之建构主义理论指导
  • 国内影片片名翻译研究综观及现状
  • 平成13年度経済情報学科特殊研究
  • Comparison of curr
  • 英文论文任务书
  • This project is to
  • the comparison of
  • デジタルペンとRFIDタグを活用した
  • 無資格者無免許・対策関
  • 創刊の辞―医療社会学の通常科学化をめ
  • gastric cancer:ade
  • 揭示政治语篇蕴涵的意识形态
  • 试论专业英语课程项目化改革的可行性
  • 多媒体环境下的英语教学交际化
  • 翻译认知论
  • 读高桥多佳子的《相似形》
  • 以英若诚对“Death of A S
  • 论沈宝基的翻译理论与实践
  • 论语域与文学作品中人物会话的翻译
  • 浅析翻译活动中的文化失衡
  • 谈《傲慢与偏见》的语言艺术
  • 论语言结构差异对翻译实效性的影响
  • 英语传递小句的认知诠释
  • 英语阅读输入的四大误区
  • 在语言选择中构建社会身份
  • 私たちが見た、障害者雇用の今。
  • 震災復興の経済分析
  • 研究面からみた大学の生産性
  • 喫煙行動の経済分析
  • 起業の経済分析
  • 高圧力の科学と技術の最近の進歩
  • 「観光立国」の実現に向けて
  • 資源としてのマグロと日本の動向
  • 揚湯試験結果の概要温泉水の水質の概要
  • 計量史研究執筆要綱 
  • 日中友好中国大学生日本語科卒業論文
  • 제 7 장
  • 전자&
  • 現代國民論、現代皇室論
  • 記紀批判—官人述作論、天皇宗家論
  • 津田的中國觀與亞洲觀
  • 津田思想的形成
  • 反思台灣與中國的津田左右吉研究
  • 遠隔講義 e-learning
  • 和文タイトルは17ポイント,センタリ
  • Design And Impleme
  • Near-surface mount
  • 중국 &
  • 韩国泡菜文化和中国的咸菜文化
  • 무한&#
  • 수시 2
  • 韩流流向世界
  • 무설&#
  • 要想学好韩语首先得学好汉语
  • 사망&#
  • Expression and Bio
  • Increased Nuclear
  • 论女性主义翻译观
  • 健康食品の有効性
  • 日语的敬语表现与日本人的敬语意识
  • 日语拒否的特点及表达
  • Solve World’s Prob
  • 韩汉反身代词“??”和“自己”的对比
  • 韩汉量词句法语义功能对比
  • 浅析日语中的省略现象
  • 浅谈日语中片假名的应用
  • 土木学会論文集の完全版下印刷用和文原
  • 英语语调重音研究综述
  • 英汉语言结构的差异与翻译
  • 平等化政策の現状と課題
  • 日本陸軍航空史航空特攻
  • 商务日语专业毕业生毕业论文选题范围
  • 家庭内暴力の現象について
  • 敬语使用中的禁忌
  • Treatment of high
  • On product quality
  • Functional safety
  • TIDEBROOK MARITIME
  • 日文键盘的输入方法
  • 高职高专英语课堂中的提问策略
  • 对高校学生英语口语流利性和正确性的思
  • 二语习得中的文化错误分析及对策探讨
  • 高职英语专业阅读课堂教学氛围的优化对
  • 趣谈英语中的比喻
  • 浅析提高日语国际能力考试听力成绩的对
  • 外语语音偏误认知心理分析
  • 读格林童话《小精灵》有感
  • “新世纪”版高中英语新课教学导入方法
  • 初探大学英语口语测试模式与教学的实证
  • 中加大学生拒绝言语行为的实证研究
  • 目的论与翻译失误研究—珠海市旅游景点
  • 对学生英语上下义语言知识与写作技能的
  • 英语水平对非英语专业研究生语言学习策
  • 英语教学中的文化渗透
  • 中学教师自主学习角色的一项实证研究
  • 叶维廉后期比较文学思想和中诗英译的传
  • 钟玲中诗英译的传递研究和传递实践述评
  • 建构主义和高校德育
  • 论习语的词法地位
  • 广告英语中的修辞欣赏
  • 从奢侈品消费看王尔德及其唯美主义
  • 论隐喻的逆向性
  • 企盼和谐的两性关系——以劳伦斯小说《
  • 论高等教育大众化进程中的大学英语教学
  • 试论《三四郎》的三维世界
  • 李渔的小说批评与曲亭马琴的读本作品
  • 浅谈中国英语的表现特征及存在意义
  • 湖南常德农村中学英语教师师资发展状况
  • 海明威的《向瑞士致敬》和菲茨杰拉德
  • 围绕课文综合训练,培养学生的写作能力
  • 指称晦暗性现象透析
  • 西部地区中学生英语阅读习惯调查
  • 论隐喻的逆向性
  • 认知体验与翻译
  • 试析英诗汉译中的创造性
  • 言语交际中模糊语浅议
  • 认知体验与翻译
  • 关于翻译中的词汇空缺现象及翻译对策
  • 从互文性视角解读《红楼梦》两译本宗教
  • 从目的论看中英动物文化词喻体意象的翻
  • 高校英语语法教学的几点思考
  • 高校体艺类学生外语学习兴趣与动机的研
  • 大学英语自主学习存在的问题及“指导性
  • 从接受美学看文学翻译的纯语言观
  • 《红楼梦》两种英译本中服饰内容的翻译
  • 法语对英语的影响
  • 影响中美抱怨实施策略的情景因素分析
  • 代写需求表
  • 跨文化交际中称赞语的特点及语言表达模
  • 实现文化教育主导外语教育之研究
  • 试论读者变量对英语阅读的影响
  • 从文化的角度看英语词汇中的性别歧视现
  • 合作原则在外贸函电翻译中的运用
  • Default 词义探悉
  • 从图示理论看英汉翻译中的误译
  • 许国璋等外语界老前辈所接受的双语教学
  • “provide” 和 “suppl
  • 由英汉句法对比看长句翻译中的词序处理
  • 1000名富翁的13条致富秘诀中英对
  • 英语中18大激励人心的谚语中英对照
  • 反省女性自身 寻求两性和谐---评
  • 浅析翻译中的“信”
  • 集体迫害范式解读《阿里》
  • 横看成岭侧成峰-从美学批评角度解读《
  • 福柯的话语权及规范化理论解读《最蓝的
  • 播客技术在大学英语教学中的应用
  • 如何在山区中等专业学校英语课堂实施分
  • 奈达与格特翻译理论比较研究
  • 语篇内外的衔接与连贯
  • Economic globaliza
  • 用概念整合理论分析翻译中不同思维模式
  • 英语新闻语篇汉译过程中衔接手段的转换
  • 对易卜生戏剧创作转向的阐释
  • 动词GO语义延伸的认知研究
  • 反思型教师—我国外语教师发展的有效途
  • 输入与输出在词汇学习中的动态统一关系
  • 教育实践指导双方身份认同批判性分析
  • 中英商务文本翻译异化和归化的抉择理据
  • 从艺术结构看《呼啸山庄》
  • 从儒家术语“仁”的翻译论意义的播撒
  • 论隐喻与明喻的异同及其在教学中的启示
  • 话语标记语的语用信息在英汉学习型词典
  • 论森欧外的历史小说
  • 翻译认知论 ——翻译行为本质管窥
  • 中美语文教材设计思路的比较
  • 美国写作训练的特点及思考
  • UP语义伸延的认知视角
  • 成功的关键-The Key to S
  • 杨利伟-Yang Liwei
  • 武汉一个美丽的城市
  • 对儿童来说互联网是危险的?
  • 跨文化交际教学策略与法语教学
  • 试论专业英语课程项目化改革的可行性-
  • 论沈宝基的翻译理论与实践
  • 翻译认知论——翻译行为本质管窥
  • 母爱的虚像 ——读高桥多佳子的《相似
  • 浅析英语广告语言的特点
  • 中国の株価動向分析
  • 日语拒否的特点及表达
  • 日语的敬语表现与日本人的敬语意识
  • 浅析日语中的省略现象
  • 浅谈日语中片假名的应用
  • 浅谈日语敬语的运用法
  • 浅谈日语会话能力的提高
  • ^论日语中的年轻人用语
  • 敬语使用中的禁忌
  • 关于日语中的简略化表达
  • 关于日语的委婉表达
  • The Wonderful Stru
  • Of Love(论爱情)
  • SONY Computer/Notb
  • 从加拿大汉语教学现状看海外汉语教学
  • MLA格式简要规范
  • 浅析翻译类学生理解下的招聘广告
  • 日本大学排名
  • 虎头虎脑
  • 杰克逊涉嫌猥亵男童案首次庭审
  • Throughout his car
  • June 19,1997: Vict
  • 今天你睡了“美容觉”吗?
  • [双语]荷兰橙色统治看台 荷兰球员统
  • Father's Day(异趣父亲节
  • 百佳电影台词排行前25名
  • June 9,1983: Thatc
  • June 8, 1968: Robe
  • 60 players mark bi
  • June 6, 1984: Indi
  • 日本の専門家が漁業資源を警告するのは
  • オーストリア巴馬は模範的な公民に日本
  • 日本のメディアは朝鮮があるいは核実験
  • 世界のバレーボールの日本の32年の始
  • 日本の国債は滑り降りて、取引員と短い
  • 广州紧急“清剿”果子狸
  • 美国“勇气”号登陆火星
  • 第30届冰灯节哈尔滨开幕
  • 美国士兵成为时代周刊2003年度人物
  • BIRD flu fears hav
  • 中国チベット文化週間はマドリードで開
  • 中国チベット文化週間はマドリードで開
  • 中国の重陽の文化の発祥地──河南省西
  • シティバンク:日本の国債は中国の中央
  • イギリスは間もなく中国にブタ肉を輸出
  • 古いものと新しい中国センター姚明の失
  • 中国の陝西は旅行して推薦ӥ
  • 中国の電子は再度元手を割って中国の有